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Abstract 

Acquired nystagmus, characterized by repetitive, involuntary eye movements, remains 

challenging to treat with current pharmacological and surgical therapies, which are often 

ineffective, non-specific, and unable to adapt to progressive symptom changes. Adaptive 

stimulation therapies, which depend on accurate, real-time detection and motion correction, may 

be necessary for effective treatment, yet these capabilities have not been fully achieved. To 

address this, we present a real-time system integrating camera-based tracking and frequency 

analysis to distinguish pathological oscillations from voluntary gaze shifts, enabling nystagmus 

detection and corrective motion vector computation. A computational model predicts the 

necessary counteracting motion to stabilize gaze, mapping corrective movements to extraocular 

muscles. Preliminary results demonstrate high accuracy (82.0%) and low response latency 

(0.01-0.022 ms) in nystagmus detection and motion compensation, establishing a foundation for 

future stimulation therapies. This system represents a step toward adaptive, closed-loop 

interventions for nystagmus management. 

 

Introduction 

Acquired nystagmus is a condition characterized by involuntary, repetitive eye 

movements that develops later in life and disrupts visual fixation. These uncontrolled oscillations 

result in oscillopsia, a perception of a continuously shifting visual field, making it difficult for 

patients to read, recognize faces, maintain balance, and perform everyday tasks requiring stable 

gaze. The condition can arise from various causes, including multiple sclerosis, stroke, head 

trauma, and neurodegenerative diseases, often leading to progressive visual impairment [1-2]. 

Unlike normal eye movements, which are precisely regulated by neural circuits in the brainstem 
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and cerebellum, nystagmus reflects a dysfunction in ocular motor control, making it particularly 

challenging to manage. 

    

Fig 1: Extraocular muscle anatomy and characteristic nystagmus waveforms. (a) Schematic 
depiction of the six extraocular muscles responsible for precise eye movement. Arrows indicate 
the directions each muscle pulls the eye when contracting. (Extraocular muscles. Contributed by 
OpenStax, License: CC BY 4.0). (b) Eye movement waveform morphologies illustrating distinct 
nystagmus subtypes, plotted as position versus time. (Wagle et al., Frontiers in Neurology, 2022). 

 

Current therapeutic approaches for acquired nystagmus focus primarily on symptomatic 

relief rather than addressing the underlying neurophysiological mechanisms. Pharmacological 

interventions, including gabapentin and memantine, can reduce nystagmus amplitude but often 

come with systemic side effects and variable efficacy across patients [3-4]. Botulinum toxin 

injections into the extraocular muscles can transiently dampen oscillations but frequently lead to 

ptosis and diplopia, limiting their long-term viability [5]. Surgical procedures, such as tenotomy 

and muscle repositioning, attempt to realign the ocular motor system but require careful patient 

selection and do not prevent disease progression [6-7]. Furthermore, these treatments lack 

adaptability to the fluctuating nature of nystagmus, offering only partial or inconsistent 

improvement. The inability of current approaches to provide a dynamic and personalized solution 
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underscores the need for novel strategies that leverage recent advances in neurotechnology and 

computational modeling.  

Emerging innovations in wearable eye-tracking technology have created new possibilities 

for real-time characterization and adaptive intervention in nystagmus. High-speed cameras now 

enable precise, continuous tracking of eye position and velocity, allowing for the differentiation 

of pathological oscillations from normal saccadic and pursuit movements [8]. Innovative signal 

processing techniques can further refine this analysis by classifying distinct nystagmus subtypes 

and predicting compensatory motor responses [9]. In this study, we present a novel eye-tracking 

and classification system, “iCrutch,” that integrates real-time velocity computation to detect 

pathological eye movements, compute counteracting motion vectors, and map corrective actions 

to extraocular muscle groups (Fig. 2). This system lays the groundwork for a future closed-loop 

neuromodulation therapy capable of dynamically stabilizing gaze, offering a transformative 

approach to managing acquired nystagmus. 

Fig 2: Real-time Nystagmus Detection and Correction Schematic for iCrutch. System 
overview depicting video frame processing, pupil tracking with Kalman filtering, velocity 
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calculation, frequency analysis, nystagmus detection based on velocity magnitude and 
zero-crossing rate, and real-time corrective anti-vector generation for eventual gaze stabilization. 
 

Results 

Real-time estimation of eye movement velocities 

To enable rapid detection of nystagmus eye movements, we developed a real-time 

tracking system that estimates horizontal and vertical eye velocities from video frames. Using 

Mediapipe’s FaceMesh model to detect pupil centers, pixel-to-degree normalization was 

achieved. The system’s velocity outputs were compared against those produced by Otosuite, a 

clinically validated standard for eye movement analysis, to validate the accuracy of the 

algorithm’s predictions [10]. All Otosuite outputs are referred to as “ground truth.” A 50-second 

clinician-provided nystagmus video was processed simultaneously through both systems. 

Frame-by-frame comparisons were performed across all four tracking channels (Left Eye X/Y, 

Right Eye X/Y). Predicted velocities from iCrutch showed strong agreement with ground truth, 

achieving R² scores of 0.825–0.900 (Fig. 3a–d). Mean absolute errors were low, with values of 

1.25 degrees/second (Left Eye X), 1.59 degrees/second (Left Eye Y), 1.09 degrees/second (Right 

Eye X), and 1.15 degrees/second (Right Eye Y). The distribution of absolute errors conveyed that 

88–92% of velocity estimates deviated by less than 3 degrees/second from ground truth (Fig. 

4a–d). Velocity detection performance was slightly higher for the right eye compared to the left 

eye. A full summary of velocity estimation performance, including mean errors, accuracies (<3 

degrees/second), and R² scores across all tracking channels, is provided in Fig. 5. These results 

confirm that the iCrutch system can deliver clinical-grade velocity measurements with high 

accuracy. 
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Fig 3: Validation of real-time eye velocity estimation by iCrutch against clinical 
standard. Scatterplots show predicted eye velocities from the iCrutch system compared 
with ground-truth velocities from Otosuite across left and right eyes and horizontal and 
vertical axes, achieving R² values of 0.825 (a) left eye vertical axis, 0.893 (b) right eye 
vertical axis, 0.900 (c) right eye horizontal axis, and 0.886 (d) left eye horizontal axis. 
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Fig 4: Distribution of absolute velocity estimation errors across eyes and axes. Histograms of 
absolute errors between iCrutch-estimated and Otosuite ground-truth velocities for (a) left eye 
vertical, (b) right eye vertical, (c) left eye horizontal, and (d) right eye horizontal movements. In 
all cases, 88–92% of estimates deviated by less than 3 degrees/second from ground truth.
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 Left Eye X Left Eye Y Right Eye X Right Eye Y 

Mean Error 

(degrees/second) 1.251969421 1.591656422 1.086720172 1.14779202 

Accuracy (<3 

degrees/second) 90.0% 88.0% 90.0% 92.0% 

R2 Score 0.886 0.825 0.900 0.893 

 
Fig 5: Summary table of velocity estimation performance across eyes and axes. Mean error 
(degrees/second), accuracy rates (percentage of frames with velocity deviations 
<3 degrees/second from ground truth), and R² scores for iCrutch-predicted eye velocities 
compared to Otosuite ground-truth measurements. Results are reported separately for horizontal 
(X) and vertical (Y) axes of both eyes. 
 

Differentiating nystagmus from voluntary saccades 

Accurate classification of eye movement type is critical to prevent unnecessary corrective 

feedback during normal eye movements. We evaluated classification performance using three 

clinician-annotated videos: one containing only saccadic movements, one containing only 

nystagmus movements, and one mixed video with 50 labeled time points conveying ground-truth 

classification. For the saccades-only video, iCrutch correctly rejected pathological detection 

82.6% of the time (specificity), while on the nystagmus-only video, 81.5% of events were 

correctly classified as pathological (sensitivity). Overall classification accuracy across the mixed 

dataset was 82.0% (Fig. 6).  
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Fig 6: Confusion matrix evaluating nystagmus detection performance. The 50 frames 
classified by the iCrutch system are shown. True positives (nystagmus correctly detected) = 22; 
false negatives (nystagmus missed) = 5; false positives (saccades incorrectly classified as 
nystagmus) = 4; and true negatives (saccades correctly classified) = 19. Rows indicate the actual 
label, and columns indicate the predicted label. 
 

Muscle targeting based on corrective anti-vectors 

In addition to nystagmus classification, iCrutch was designed to identify which 

extraocular muscles should be engaged to counteract detected pathological movement. We 

validated muscle targeting performance by comparing iCrutch predictions to evaluations by a 

clinical expert across 50 annotated trials. Videos were analyzed using the full iCrutch detection 

pipeline, and predicted muscle activations were cross-checked against clinician-identified targets. 

The overall targeting accuracy was 94%, with medial rectus movements classified with perfect 

accuracy (23/23 trials correct) and lateral rectus movements classified correctly in 80% of cases 

(Fig. 7).  
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Fig 7: Confusion matrix for predicted versus actual muscle activation classifications. The 50 
trials classified by the iCrutch system across four muscle activation categories are shown: 
Lateral, Lateral/Inferior, Medial, and Medial/Superior. True positives included 12 lateral, 4 
lateral/inferior, 23 medial, and 8 medial/superior classifications. Minor misclassifications 
occurred between lateral and lateral/inferior activations. Rows indicate the actual muscle 
activation label; columns indicate the predicted label.  
 

Latency of velocity detection and corrective vector generation 

To ensure corrective feedback occurred before eye reversal during a nystagmus 

oscillation, we targeted a maximum system latency of 83 ms. This threshold was based on the 

upper bound of typical horizontal nystagmus frequencies (~6 Hz), where the available time for 

corrective action corresponds to half the oscillation period [11]. To evaluate system latency, 

timestamps were recorded at the moment of frame acquisition and again at the moment when the 

corresponding corrective anti-vector was rendered on screen. The difference between these 

timestamps represented the total computational delay.  
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Across multiple validation sessions, the iCrutch system exhibited an average corrective 

vector latency of 0.01 ms for right eye tracking and 0.022 ms for left eye tracking (Fig. 8). Both 

values were well below the 83 ms threshold, ensuring that corrective vectors could be calculated 

and displayed within a fraction of a nystagmus cycle. These findings confirm that iCrutch 

achieves the low-latency requirements necessary for real-time closed-loop nystagmus 

stabilization. 

 

 

Fig. 8: Corrective vector latencies for right and left eyes.   Bar graph showing the average 
latency from frame acquisition to antivector calculation and visualization for right and left eyes. 
The iCrutch system achieved average latencies of 0.01 ms for the right eye and 0.022 ms for the 
left eye, both well below the critical 83 ms threshold required for timely corrective intervention. 
Latency values were computed across 100 validation trials. 
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Discussion 

The results demonstrate that iCrutch is capable of real-time nystagmus detection and 

mapping corrective intervention. iCrutch achieved high spatial velocity accuracy, with mean 

errors ranging from 1.09–1.59 degrees/second across all tracking channels and accuracies of 

velocity estimates ranging from 88%–92%. R² scores between 0.825–0.900 demonstrate strong 

correlations with a clinical standard, Otosuite, validating the reliability of the velocity 

measurements for clinical and research use. Accurate velocity detection is critical for determining 

the appropriate magnitude of stimulation required for extraocular muscle activation. Tracking 

accuracy was slightly higher for the right eye, likely due to better lighting and camera alignment 

during video acquisition, which improved landmark visibility. 

Beyond velocity estimation, iCrutch demonstrated the ability to reliably differentiate 

between pathological nystagmus and voluntary saccades, achieving an overall classification 

accuracy of 82.0%. Specificity for correctly rejecting saccades was 82.6%, and sensitivity for 

detecting nystagmus was 81.5%, despite challenges posed by low-amplitude oscillations and 

slow rhythmic saccades. The system’s ability to distinguish pathological from voluntary 

movement patterns is essential for enabling selective, real-time corrective interventions for 

nystagmus. 

In addition to robust velocity detection, our system demonstrated the ability to map 

corrective vectors to specific muscle groups, a critical step toward closed-loop control. Muscle 

targeting predictions achieved 94% accuracy when compared to clinical assessments, with perfect 

classification of medial rectus movements and slightly lower performance for lateral rectus 

movements, which was likely due to increased variability in lateral tracking caused by smaller 

observable displacements during lateral gaze and increased sensitivity to head rotations. 
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Nevertheless, the system’s ability to decompose eye movements into discrete muscle activations 

lays the groundwork for future closed-loop neuromuscular stimulation interventions. 

Latency testing confirmed that iCrutch operates well within the required timeframe for 

effective correction. Fast corrective vector computation times (0.01 ms right eye, 0.022 ms left 

eye) ensure that interventions can occur well within the critical time window (<83 ms). These low 

latencies ensure that corrective vectors are generated quickly enough to meaningfully reduce 

oscillation amplitude before reversal, a critical requirement for real-time symptom management. 

Despite these promising results, several limitations remain. Tracking performance could 

regress under poor or dark lighting conditions, off-center head positions, or in cases of atypical 

facial geometry, suggesting areas for further algorithmic improvements. Muscle targeting 

accuracy for compound movements remains to be tested, particularly for patients exhibiting 

nystagmus on multiple axes. Although iCrutch was validated using clinician-recorded datasets, 

larger-scale validation across diverse patient populations and nystagmus subtypes will be 

necessary to fully confirm the system's clinical utility. 

Future development efforts will focus on expanding eye tracking robustness across varied 

environmental conditions (poor lighting, off-angle faces, eye closure, or partial occlusion), 

integrating real-time extraocular muscle targeting, and implementing wearable glasses for 

continuous patient use. Longer-term clinical studies will be essential to assess the durability, 

tolerability, and therapeutic effectiveness of iCrutch in real-world settings. With further testing 

and clinical validation, iCrutch has the potential to substantially improve visual stability and 

quality of life for affected patients. Its ability to correct pathological eye movements in real time 

offers a unique opportunity for therapeutic intervention, potentially transforming current 
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treatment strategies. By combining real-time tracking, classification, and muscle-specific 

corrective outputs, iCrutch establishes a foundation for an adaptive closed-loop therapy capable 

of dynamically managing acquired nystagmus.  

 

Methods 

Prototype design 

The goal of iCrutch was to enable real-time detection and correction of the visual 

instability caused by acquired nystagmus. Upon detection, the system calculates a corrective 

anti-vector by inverting and normalizing the instantaneous velocity vector. Anti-vector generation 

occurs within 83 ms of movement onset, ensuring that corrective feedback aligns with natural 

visual-motor latencies. Although closed-loop neuromuscular stimulation is a future objective, the 

current prototype focuses on real-time detection and corrective vector output. Subsequent 

sections detail the algorithms responsible for pupil tracking, pathological classification, and 

anti-vector computation. 

 

Eye tracking software: detection and analysis algorithms 

From video data inputs, eye position and movement were recorded using the FaceMesh 

model of the Mediapipe library (version 0.8.10) to estimate facial and iris landmarks [13]. 

Tracking was performed at one face per frame, with iris landmark indices 469–472 (left eye) and 

474–477 (right eye) used to localize pupil positions. Pupil center positions were computed as the 

mean coordinates of the four defined iris landmarks and filtered using a custom 1D Kalman filter 

to reduce noise. The Kalman filter was initialized with a state vector containing position and 
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velocity, a state transition matrix assuming constant velocity, and process and observation noise 

covariances set to diag([1, 3]) and 10, respectively. The Kalman filter parameters were iteratively 

tested and updated to minimize tracking noise. Velocity estimates were obtained by differencing 

the filtered pupil positions across frames and dividing by the inter-frame interval. High-pass 

filtering was applied to the velocity signals using a Butterworth filter with a 0.2 Hz cutoff 

frequency, preserving rapid oscillations characteristic of nystagmus while dampening lower 

frequencies. To standardize measurements across variations in subject distance and scaling, 

instantaneous pupil velocities, were normalized by the estimated eye width and converted from 

pixels/second to degrees/second using the following formula:  

 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦
𝑑𝑒𝑔𝑟𝑒𝑒𝑠/𝑠𝑒𝑐𝑜𝑛𝑑

 =  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦
𝑝𝑖𝑥𝑒𝑙𝑠/𝑠𝑒𝑐𝑜𝑛𝑑

 ×  30◦

𝐸𝑦𝑒𝑊𝑖𝑑𝑡ℎ
𝑝𝑖𝑥𝑒𝑙𝑠

The eye width was estimated per frame by calculating the pixel distance between medial and 

lateral canthi, the corner of the eye where the upper and lower eyelids meet (landmarks 263–362 

for the left eye, and 33–133 for the right eye). Pixel-to-degree conversion was calibrated by 

taking images of a calibration target placed at a known distance and measuring the angle between 

the medial and lateral canthi. Across sample videos, the average horizontal visual angle was 

about 30°, which was used for normalization.  

Once velocities were identified, candidate nystagmus events were detected based on two 

criteria calculated over a sliding 1-second window: (1) a peak pupil velocity magnitude between 

15–60 degrees/second, estimated as the 90th percentile of the filtered velocity distribution, and 

(2) a zero-crossing rate (ZCR) of the velocity signal exceeding 3 Hz. Zero-crossings were defined 

as sign changes in the high-pass filtered velocity trace, and ZCR was computed by counting 

crossings divided by twice the analysis window duration [14]. The ZCR threshold was 
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empirically optimized using clinician-labeled datasets to maximize differentiation between 

continuous pathological oscillations and isolated voluntary saccades. Nystagmus detection 

required sustained threshold satisfaction for at least 0.5 seconds to minimize false positives. 

These parameters reliably differentiate continuous nystagmus oscillations from voluntary 

saccades, which exhibit isolated high-velocity bursts and lower ZCR [5]. For frames with 

detected eye movements, anti-movement vectors were computed by inverting and normalizing 

the instantaneous pupil movement vectors and scaling them proportionally to pupil velocity. 

Muscle identification was based on a vector decomposition: positive X components above a 

threshold of 0.7 degrees/second indicated activation of the medial rectus; negative X components 

indicated the lateral rectus; positive Y components indicated the superior rectus; and negative Y 

components indicated the inferior rectus. 

Real-time visualizations of pupil tracking, nystagmus detection, anti-movement vectors, 

and muscle activation overlays were implemented using OpenCV (version 4.5.5). A graphical 

overlay depicting the right eye's extraocular muscles was superimposed onto the video stream 

with consistently updated highlights based on inferred muscle activation. For offline analysis, 

position traces, velocity profiles, and anti-movement vector magnitudes were stored and 

visualized using custom scripts written in Python (version 3.8.8) and Matplotlib (version 3.7.2). 

 

Evaluation of eye velocity measurements 

To confirm the accuracy of the nystagmus velocity values calculated by the iCrutch 

system, outputs were compared to Otosuite, a widely used clinical standard. A clinician-provided 

video of nystagmus was loaded into the iCrutch system. The algorithm processed the video and 

outputted velocity values for the left and right eyes in the X and Y axes. The same dataset was 
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analyzed by both systems, and resulting velocity values for both eyes and axes were compared 

frame-by-frame across a 50-second interval. The test assumed that (1) Otosuite’s velocity output 

represents a clinically validated gold standard for nystagmus assessment and (2) the input dataset 

is raw and unsmoothed, to ensure accurate frame-level comparison. The goal was for the iCrutch  

algorithm to match Otosuite’s velocity measurements with ≥90% accuracy. Accuracy was defined 

as the proportion of data points where the iCrutch output falls within ±10 degrees/second of the 

Otosuite value. Additionally, the mean error and R² score was analyzed for each axis of both 

eyes, calculated using the following equations: 

 𝑀𝑒𝑎𝑛 𝑒𝑟𝑟𝑜𝑟:  1
𝑛

𝑖=1

𝑛

∑  (𝑉𝑖𝐶𝑟𝑢𝑡𝑐ℎ1ᵢ −  𝑉𝑜𝑡𝑜𝑠𝑢𝑖𝑡𝑒ᵢ)

% 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦: (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑜𝑖𝑛𝑡𝑠 𝑊𝑖𝑡ℎ𝑖𝑛 ±10 𝑝𝑥) / (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑖𝑎𝑙𝑠) × 100

 

Where  represent velocities outputted by iCrutch system and 𝑉𝑖𝐶𝑟𝑢𝑡𝑐ℎ1ᵢ 𝑎𝑛𝑑 𝑉𝑜𝑡𝑜𝑠𝑢𝑖𝑡𝑒ᵢ

Otosuite respectively. 

 

Evaluation of nystagmus differentiation 

The nystagmus differentiation capabilities of the iCrutch system were evaluated through a 

clinician guided comparison test. Three clinician-labeled videos were obtained from Dr. Kemar 

Green (Johns Hopkins Medical Institutions): one containing only saccades, one containing only 

nystagmus, and one containing a mix of both movement types with 50 annotated time points 

indicating the expected classification. Each video was loaded into the system and analyzed using 

the complete algorithm pipeline, which included pupil tracking, velocity detection, and 

nystagmus classification. For the saccades-only video, any detection of nystagmus was counted 
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as a false positive. For the nystagmus-only video, any missed detection was counted as a false 

negative. The mixed video was used to evaluate overall classification accuracy at the 50 

annotated time points. To support validation, a script that automatically logged the detection 

outputs into a structured CSV file was developed. For each detected event, the script recorded the 

classification label, the corresponding timestamp, and an extracted image frame of the eye 

position. This enabled efficient post-processing and cross-referencing against ground truth labels. 

The system's classification accuracy was evaluated based on the proportion of correctly identified 

movements, with a target of ≥90% accuracy for distinguishing nystagmus from voluntary 

saccades. 

 
Evaluation of extraocular muscle targeting 

Beyond detecting nystagmus, the system needs to produce corrective anti-vectors mapped 

to extraocular muscle activations. The muscle targeting test was aimed to verify the accuracy of 

the system in identifying which extraocular muscles should be stimulated to counteract abnormal 

eye movements from nystagmus. To test this, a two-pronged methodology was used. Initially, the 

algorithm analyzed eye movement data from videos, a total of 50 trials, to predict which 

extraocular muscles required stimulation. These predictions were then compared against 

assessments by a neuro-ophthalmologist, who independently reviewed the same videos to 

determine the necessary muscle stimulations. A prediction was considered correct if it matched 

the clinician’s assessment. Following this, a digital eye model was utilized to confirm the 

accuracy of muscle stimulation. By inputting videos for specific counteracting vectors into the 

model, the stimulation of opposing muscles was verified based on whether the correct muscles 

were activated. 
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Evaluation of latency 
 The latency test measured the time between frame acquisition and the visual rendering of 

the corresponding eye velocity and corrective anti-vector overlay. Using Python’s time.time() 

function, both the moment each video frame was captured and the moment the anti-vector was 

drawn on-screen were captured. The difference between these two timestamps was recorded for 

each frame for each eye, providing a running estimate of system latency. Latency values were 

stored in a buffer and visualized both in real time (on-screen) and retrospectively (plotted over 

time) to evaluate consistency and detect possible delays. This test quantified the real-time 

performance of the velocity detection and feedback rendering pipeline, ensuring that corrective 

cues are displayed with minimal delay after movement onset.  

The test was considered successful if the time to vector calculation was under 83 ms. This 

threshold was determined by considering the upper bound of typical horizontal nystagmus 

frequencies (6 Hz). To make sure that corrective feedback could be delivered before the eye 

changed directions, the time required for a single movement during a nystagmus oscillation was 

calculated. This was calculated by taking half the period of the oscillation, given by . 1
2 × 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

At a maximum frequency of 6 Hz, this yielded a minimum latency requirement of approximately 

83 ms. Ensuring corrective detection and feedback well within this window was critical to 

provide proper correction prior to the onset of the next oscillation. 

 

Data Availability 

The datasets generated and analyzed during the current study are available from the 

corresponding author upon reasonable request. Due to privacy considerations and the sensitive 
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nature of patient-derived eye-tracking data, access will be granted following appropriate ethical 

approvals and data-sharing agreements. 
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